EmbeddedExpertIO
Need Help? Contact us at:
support@embeddedexpert.io
         Your free gift is on its way to your inbox, but before you go 
check out this very special offer, just for you!
Deep Learning on ARM Processors 
18+ total hours of quality training
Complete source code included

Some Lesson Previews (2 of 99)

                                    Updating Parameters Effectively
                                    Coding : Updating our Model
 30 Day Money Back Guarantee
  •   Deep Learning on ARM Processors ($59.99 Value)
Total Value: $59.99
I personally guarantee that by the end of this training pack you will be able to accomplish the following
  • Build Neural Networks from scratch without libraries
  • ​Master quantization methods for deploying Neural Networks on microcontrollers
  • ​Build a Deep Learning Firmware for Handwriting Recognition

    Hardware requirements for this course ?

    • STM32F411-NUCLEO BOARD
    • ​STM32F429 -DISCO BOARD
    •  Setting Up Keil uVision 5
    • ​Download Keil uVision 5
    • ​Installing Keil uVision 5
    • ​Installing Packs
    • ​Changing the Compiler
    • ​Introduction
    • ​Introduction to Deep Learning
    • ​Considerations for Deep Learning on Microcontrollers
    • ​Coding : Setting Up a UART Driver
    • Further discussion on UART Alternate Function configuration
    • ​Building Blocks of Neural Networks
    • The Single Input Single Output Neural Network
    • ​Installing Tera Term
    • ​Coding : The Single Input Single Output Neural Network
    • ​The Multiple Input Single Output Neural Network
    • ​Coding : The Multiple Input Single Output Neural Network
    • ​Coding : Single Input Multiple Output Neural Network
    • ​The Multiple Input Multiple Output Neural Network
    • ​Coding : The Multiple Input - Multiple Output Neural Network
    • ​The Hidden Layer Neural Network
    • ​Coding : The Hidden Layer Neural Network
    • ​Comparing and Finding Error
    • ​Coding : Finding Error
    • ​Understanding data representation in Machine Learning
    • ​Understanding the "Learning" in Machine Learning
    • ​Coding : Brute-force Learning
    • ​Introduction to Gradient Descent
    • ​Functional Description of a Biological Neuron
    • ​Introduction to Neural Network (Part 2)
    • ​Case Study : Building a Neural Network to Predict Muscle Gain
    • ​Coding : Normalizing Datasets
    • ​Coding : Random Initialization of Weights
    • ​Understanding Activation Functions
    • ​Coding : Forward Propagation
    • ​Basics of Calculus
    •  CubeMX 5 & CubeIDE Primer
    • Downloading STM32CubeMX and CubeIDE
    • ​Installing STM32CubeMX and CubeIDE
    • ​Installing CubeMX Packages
    • ​Overview of CubeMX 5
    • ​CubeMX AI
    • ​Setting Up CubeMX.AI
    • ​Case Study : Deploying the MNIST Handwriting Recognition Model on ARM MCUs
    • ​Coding : Setting up our project
    • ​Coding : Cleaning Up our Project
    • ​Coding : Implementing the User Interface
    • ​Coding : Implementing the Touch Sensor
    • ​Coding : Scaling the Input Image
    • ​Coding : Deploying our Neural Network (Part 1)
    • ​Coding : Deploying our Neural Network (Part 2)
    • ​Coding : Updating our Model
    • ​CubeMX Primer
    • ​Setting Up STM32CubeMX
    • ​Overview of STM32CubeMX
    • ​Overview of STM32CubeMX (continued)
    • ​Checking for Updates and Firmwares
    • ​Pinout and Peripheral Configuration
    • ​Clock Tree configuration
    • ​The Configuration Tab
    • ​Input/Output
    • ​Input Interrupt
    • ​Basic Delay TIMER
    • ​Logistic Regression
    • ​Case Study : Building a Neural Network to Detect Cats
    • ​Deep Neural Networks
    • ​ Internals of a 2 layer Neural Network
    • ​Activation Functions
    • ​Understanding Computational Graphs
    • ​Updating Parameters Effectively
    • ​Understanding the Importance of Vectorization
    • ​Summary of Back-propagation and Forward-propagation
    • ​Initializing Parameters Effectively
    • ​Understanding Layers and Units
    • ​Understanding the Shapes
    • ​Understanding Broadcasting in Programming
    • ​Improving Neural Networks with Regularization Techniques
    • Overfitting and Underfitting
    • ​Building A Logistic Regression Model
    • ​Coding : Installing Python
    • Coding : Installing Python Packages
    • ​Coding : Setting up our project
    • ​Coding : Creating a Helper script
    • ​Coding : Inspecting our dataset
    • ​Coding : Inspecting the dataset Dimensions
    • ​Coding : Pre-processing our dataset
    • ​Coding : Implementing Forward and Backward Propagation
    • ​Coding : Implementing Gradient Descent
    • ​Coding : Implementing the Predictor function
    • ​Coding : Training our Model
    • ​Coding : Testing our Model
    • ​Building Deep Neural Networks From Scratch
    • ​Coding : Building A Deep Neural Network Library (Version 1)
    • ​Coding : Implementing a Two-Layer Neural Network (Inspecting the Dataset)
    • ​Coding : Implementing a Two-Layer Neural Network ( Pre-processing the Dataset)
    • ​Coding : Implementing a Two-Layer Neural Network ( Building the Model )
    • ​Coding : Implementing a Two-Layer Neural Network ( Testing the Model)
    • ​Coding : Building A Deep Neural Network Library (Version 2)
    • ​Coding : Implementing a Neural Network with an arbitrary number of Layers
    • ​Coding : Testing the Multi-Layer Neural Network
    • ​Convolutional Neural Networks (CNN)
    • ​Introduction to Convolution
    • ​Introduction to 2D Convolution
    • ​Describing ConvNet Layers
    • ​Understanding Padding
    • ​Understanding Striding
    • ​Convolution Over Volume
    • ​Single Layer of a Convolutional Neural Network
    • ​Examining a Complete Convolutional Neural Network
    • ​Understanding the Pooling Layer
    • ​Examining a Complete Convolutional Neural Network with a Pooling Layer
    • ​​Python Essentials
    • ​Downloading Python
    • ​Installing Python
    • ​Using IDLE
    • ​Installing Python packages
    • ​Testing the packages
    • ​Printing statements
    • ​Variables
    • ​Lists
    • ​Operators
    • ​Conditions
    • ​For Loops
    • ​While Loops
    • ​Functions
    • ​Dictionaries
    • ​Classes and Objects
      My  courses have been reviewed by 1000+ students
      Here are some of the reviews
      • ​  Deep Learning on ARM Processors ($59.99 Value)
      Total Value: $59.99
      But today, you're getting all of this...
      For Only $29.78

       30 Day Money Back Guarantee

      Remember, I have no doubt you will love the training but should in case you are not completely satisfied you can request a refund within 30 days of purchase and you shall be fully refunded with no questions asked.

      Sounds fair ? 
      I know there are some websites out there that offer you something cool for a low price, but then stick you into some program that charges your card every month.
      This isn't one of them. There's NO hidden cost.

      Thanks for taking the time to read this letter and I hope you enjoy the training!

      -Israel N Gbati